vendredi 29 juillet 2011

Le Sens du Don - Philippe Chanial - 117 mn - Audencia - ESC Nantes - 2011

L'Art du Don - Le Don comme : Fondement des relations humaines, Réactualisation de l'alliance entre les individus, création et maintient du Lien social ...

Conférence de Philippe Chanial : "Le Sens du Don" - Association Iségoria - Audencia - 10 mai 2011


Lien direct vers la conférence sur Audencia TV : http://bit.ly/Sens-du-Don-Audencia

Nous ne cessons de donner, notre sang, notre temps à des associations, notre chèque aux causes qui nous sont chères, mais aussi dans le monde professionnel.
A l’évidence, le sens du travail ne se réduit pas au salaire reçu, il suppose aussi de donner à l’équipe, au projet, à l’entreprise. Car donner permet d’échanger, de se lier, d’être reconnu, bref, d’exister.

Pour autant, savons-nous ce que donner veut dire ?
La conférence esquissera quelques réponses, en rappelant que le système du don (le "Donner - Recevoir - Rendre" de Marcel Mauss) est aujourd’hui bel et bien vivant.
Bien plus qu’une affaire de "bons sentiments", le don définit le fondement même des relations humaines, cet art de se lier indissociable de cette part du gratuit, du non-utilitaire sans laquelle la vie n’aurait pas de prix...


Philippe Chanial est sociologue, maître de conférences à l’Université Paris Dauphine et secrétaire de rédaction de la Revue du MAUSS. Il a notamment écrit "La société vue du don" publié en 2008 et "Justice, don et association" en 2002...

Lien direct vers la conférence sur Audencia TV : http://bit.ly/Sens-du-Don-Audencia

Lien direct fichier vidéo : http://bit.ly/Sens-du-Don-Video
Le site d'Audencia - ESC Nantes : http://www.audencia.com

Conférence : "Le Sens du Don" - Philippe Chanial - Durée : 117 mn - Audencia - ESC Nantes - 10 mai 2011

OnlyZen TV : Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ... Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV

vendredi 3 juin 2011

Entre Mythe et Utopie - Humanisme et humanisme ''juridique'' : Naissance et Métamorphoses du Mythe - Mireille Delmas-Marty - 58 mn - Collège de France - 2011


Cours du 5 janvier 2011 - Introduction : Entre mythe et utopie - Humanisme et humanisme ''juridique'' : Naissance et métamorphoses du mythe - Par Mireille Delmas-Marty de la Chaire "Etudes juridiques comparatives et internationalisation du droit"


Cours du 5 janvier 2011 : Sur le site du Collège de France ou Téléchargez la vidéo : Fichier format mov compatible itunes

Présentation du cours : "Sens et non-sens de l'humanisme juridique"
Ce titre exprime un malaise car les abus de la ritournelle humaniste fragilisent l’humanisation des systèmes de droit à un moment où elle semble plus que jamais nécessaire, face à la mondialisation. Certes l’humanisme "juridique" est en apparence renforcé par le développement des droits de l’homme, l’apparition d’un droit humanitaire et l’émergence d’une justice pénale internationale. Et pourtant les courants antihumanistes ont beau jeu de dénoncer ses non-sens, évoquant les nombreuses contradictions qui sont révélées, et parfois aggravées, par la mondialisation.

Quelques exemples : le durcissement du contrôle des migrations souligne la contradiction entre fermeture des frontières et ouverture des marchés ; l’aggravation des exclusions sociales contraste avec la croissance des profits économiques et financiers ; la persistance de crimes internationaux liés ou assimilés aux conflits armés montre les limites de la justice pénale. Citons encore la multiplication des atteintes à l’environnement face au développement économique, ou l’ambivalence des nouvelles technologies numériques et biomédicales qui favorisent à la fois l’individualisation et son contraire. A l’épreuve de la mondialisation, le mythe de l’humanisme juridique ressemble à une mystification.

Pour donner sens à la fois à l’humanisme et à la mondialisation, il ne suffit pas de réaffirmer des principes humanistes. Il faut mettre en œuvre des processus, encore utopiques mais déjà repérables, qui visent à humaniser les systèmes de droit en permettant de surmonter les contradictions dans la perspective d’un "pluralisme ordonné"...

Supports de cours, plan, et vidéos de la Chaire "Etudes juridiques comparatives et internationalisation du droit"


Introduction : Entre mythe et utopie - Humanisme et humanisme ''juridique'' : naissance et métamorphoses du mythe - Mireille Delmas-Marty - 58 mn - Cours du 5 janvier 2011 - Collège de France - 2011
Introduction : Entre mythe et utopie - Humanisme et humanisme ''juridique'' : Naissance et métamorphoses du mythe

La suite - Cours du 12 janvier 2011 par Mireille Delmas-Marty :
Introduction - Entre Mythe et Utopie. De l'humanisme juridique à l'humanisation des droits : Mort et Transfiguration
Durée : 61 mn - Collège de France - 2011


Lien direct : Cours du 12 janvier 2011. Introduction - Entre mythe et utopie. De l'humanisme juridique à l'humanisation des droits : Mort et transfiguration - 61 mn - Collège de France - 2011

           
Mireille Delmas-Marty - Chaire "Etudes juridiques comparatives et internationalisation du droit"

OnlyZenTV : Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ... Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création : Twitter OnlyZenTV

vendredi 14 janvier 2011

La Transmission de l'astronomie Antique - Denis SAVOIE - 83 mn - CERIMES - IAP, Observatoire de Paris, SYRTE, Palais de la découverte - 2011




Conférence donnée à l'IAP (Institut d'Astrophysique de Paris), le 4 janvier 2011, par Denis SAVOIE
Chef du département Astronomie - Astrophysique du Palais de la découverte.

"Etat des sources et transmission de l'astronomie antique" par Denis SAVOIE
Disciplines : Astronomie et sciences connexes, Histoire des sciences
Durée du programme : 83 mn - Date de réalisation : 04/01/2011

Auteur : Denis SAVOIE - Réalisateurs : Marcel LECAUDEY - Loic QUENTIN - Jean MOUETTE
Producteurs : CERIMES - IAP (Institut d'Astrophysique de Paris)
Distributeur : CERIMES - Centre de ressources et d'information sur les multimédias pour l'enseignement supérieur

Ouvrages de Denis Savoie disponibles sur le site de la Fnac

Denis Savoie est un astronome français né au XXe siècle spécialisé en histoire des sciences (tables astronomiques).
Directeur du planétarium et du département d'astronomie et de d'astrophysique du Palais de la découverte à Paris, Denis Savoie a précédemment présidé la commission des cadrans solaires de la SAF (Société astronomique de France) pendant vingt ans, sujet sur lequel il a écrit plusieurs ouvrages de référence. Il est aussi chercheur associé au Syrte, qui est le département Système de référence temps espace de l'Observatoire de Paris.
Les Exposés du département d'Astronomie et Astrophysique du Palais de la découverte.

Denis SAVOIE : Astronome français

Source CERIMES - IAP, Institut d'Astrophysique de Paris - 2011 :
"Etat des sources et transmission de l'astronomie antique" par Denis SAVOIE

OnlyZenTV : Education - Innovation - Création - We are sure ! Together we can Change the World ...
Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ...
Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV

jeudi 13 janvier 2011

Secrets de plantes : L'If aux frontières de la vie - Jean-Luc Bouvret - L'if, un arbre symbole et le Taxol - 52 mn - Arte France, CNRS - Universcience - 2010



"Secrets de plantes : L'If aux frontières de la vie" - La Case Documentaire d'Universcience TV
Durée du programme : 52 mn - Réalisation : Jean-Luc Bouvret - Coproduction : Arte France, CNRS, Le Musée National d'Histoire Naturelle, Le Miroir 2010 - Avec la voix de Marie Christine Barrault

Noueux, tordu, arbre symbole de la vie et de la mort, l'if produit le taxol, une molécule tueuse de cellules cancéreuses. Dès lors, l'if connaît une surexploitation source de graves conflits entre écologistes et industriels de la santé ...

Source Universcience TV : Secrets de plantes : L'If aux frontières de la vie - Jean-Luc Bouvret - 2010

Planches et Photo d'Ifs - Taxux Baccata - "L'If commun" sur Wikipedia


OnlyZenTV : Education - Innovation - Création - We are sure ! Together we can Change the World ...
Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ...
Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV

Le Temps et sa flèche - Etienne KLEIN - Temps physique et temps psychologique, Représentation et Discontinuité du temps - 82 mn - UTLS - 2000




188e conférence de l’Université de tous les savoirs donnée le 6 juillet 2000
"Le temps et sa flèche" par Etienne KLEIN
Disciplines : Physique - Classification Dewey : Temps, Physique, Physique moléculaire, atomique, nucléaire, quantique
Producteur : Mission 2000 en France - Réalisateur : UTLS - la suite
Durée du programme : 82 mn - Date de réalisation : 06/07/2000

Chacun comprend de quoi nous voulons parler lorsque nous prononçons le mot temps, mais personne ne sait vraiment quelle réalité se cache derrière lui. Si le mot est clair, la chose ne l'est pas, qui se perd dans les brumes dès qu'on tente de la saisir. Pourtant les sciences, en particulier la physique, interrogent sans relâche la nature et les propriétés du temps. Quel statut faut-il lui donner ? S'écoule-t-il de façon régulière ? Est-il réversible ? Comment est-il relié à l'espace ? Peut-on concilier temps physique et temps psychologique ? Nous verrons comment chacune des révolutions qui ont agité la physique a remis en cause notre représentation du temps et des liens qu'entretient ce dernier avec l'espace et la matière.

Plan et découpage de la conférence "Le Temps et sa flèche" par Etienne KLEIN :
- 01:26 - Présentation
- 01:52 - Introduction
- 13:03 - L'impossible définition du temps
- 06:03 - Le temps physique et le temps psychologique
- 09:51 - La représentation du temps
- 08:07 - Le principe de causalité dans la théorie quantique des champs
- 03:29 - La discontinuité du temps
- 09:46 - La flèche du temps
- 06:46 - Les particules étranges
- 01:38 - Conclusion
- 20:03 - Questions

Texte de la 188e conférence de l’Université de tous les savoirs donnée le 6 juillet 2000 :
"Le temps, son cours et sa flèche" par Etienne KLEIN

    Un peu de poésie pour commencer

    C'est à un physicien britannique, Arthur Eddington, que le temps doit d'être équipé (depuis 1929) d'un emblème, la flèche, que la mythologie attribuait jusque-là à Éros, le dieu de l'amour, représenté comme un enfant fessu et ailé qui blesse les cœurs de ses flèches aiguisées. La flèche du temps ne symbolise plus le désir amoureux, hélas, mais le sentiment tragique que nous éprouvons tous d'une fuite inexorable du temps. Pour les physiciens, elle se traduit par l'irréversibilité de certains phénomènes physiques. Elle se distingue du cours même du temps, avec lequel elle est pourtant souvent confondue.
    Avant d'entrer dans le vif du sujet, je voudrais vous proposer quelques phrases d'écrivains ou de poètes, qui chacune à sa façon, évoquent soit le cours du temps, soit sa flèche, soit un mélange des deux.
    Commençons par Sacha Guitry : « Madame est en retard. C’est donc qu’elle va venir. » C'est le cours du temps qui est ici évoqué, d'une façon non dramatique mais cruellement misogyne. Continuons avec Georges Perros, l'auteur des Papiers Collés : « L’horloge sonne. C’est le temps qui tâte son pouls. » Voilà sans doute la façon la plus neutre d'évoquer le fait que le temps passe et de dire qu'il a un cours bien défini. Poursuivons avec Robert Desnos : « La feuille qui tombe et la roue qui tourne te diront que rien n’est perpétuel sur terre. » Cette phrase juxtapose l'idée de temporalité à celle de finitude. Tristan Tzara, un autre poète surréaliste, enfonce le clou d'une façon qui fait froid dans le dos : « Je me souviens d’une horloge coupant des têtes pour indiquer les heures. » C'est que le temps a à voir avec l'irréversibilité et avec la mort. Loin de pouvoir tuer le temps, c’est lui qui nous dévore. L'Antiquité associait d'ailleurs la planète Saturne au cruel titan Kronos qui dévorait ses enfants au fur et à mesure que son épouse Rhéa les mettait au monde. Mais comme il n'est pas question aujourd'hui de sombrer dans la délectation morose en associant trop directement temps et mort, nous terminerons ce petit florilège par ces mots de Jorge Luis Borges (dans Aleph), qui rappellent que la valeur de la vie, la vie comme valeur, s'enracine justement dans la connaissance de son essentielle précarité : « La mort rend les hommes précieux et pathétiques. Ils émeuvent par leur condition de fantômes ; chaque acte qu'ils accomplissent peut être le dernier ; aucun visage qui ne soit à l'instant de se dissiper comme un visage de songe. Tout chez les mortels a la valeur de l'irrécupérable et de l'aléatoire. »

    Qu'est-ce que temps ?
    Nos réflexions sur le temps sont presque toujours confuses, sans doute parce que nous ne savons pas trop de quel type d'objet il s’agit. Le temps est-il une chose ? Est-ce une idée ? Est-ce une apparence ? N'est-ce qu'un mot ? Existe-t-il en dehors de l’ « âme », selon le terme de saint Augustin ? Est-il un produit de la « conscience », selon le terme de Husserl ? Il est difficile de répondre à ces questions, mais très souvent on croit que les scientifiques, et notamment les physiciens, seront un jour capables de nous révéler la nature du temps, ou du moins d'en proposer une définition qui serait plus exacte que les autres. Il s'agit sans doute d'un malentendu, car il est toujours difficile de définir les mots importants. Peut-être est-ce même impossible puisque, si ces mots sont vraiment fondamentaux, on ne peut pas les rapporter à autre chose qu'eux-mêmes. Définir, c’est avant tout ramener une conception donnée à une autre plus fondamentale. Mais qu’y a-t-il de plus fondamental que ce qui est déjà fondamental ? Rien, et c’est sans doute pourquoi le philosophe Martin Heidegger avait raison de remarquer que les scientifiques posent finalement très peu de questions comme « Qu’est-ce que le temps ? », « Qu’est-ce que l’espace? », « Qu’est-ce que la matière? », alors que c’est souvent la réponse à ces questions que l’on attend d’eux.
    On oublie trop souvent que la puissance de la physique vient de ce qu'elle a su limiter ses ambitions. Elle ne s'intéresse pas à toutes les questions qui se posent dans nos têtes, loin s'en faut. Elle prend soin de ne sélectionner que celles qui relèvent de ses compétences et de sa méthode. Par exemple, elle n'essaie pas de résoudre la question de la nature du temps, ou du moins, si elle le fait, c'est seulement à la marge de ses théories. Elle cherche plutôt la meilleure façon de représenter le temps, ce qui est une tout autre affaire.
    Attardons-nous deux minutes sur l'épineuse question de la définition du temps. Chacun comprend de quoi on veut parler lorsque le mot temps est prononcé, mais personne ne sait vraiment quelle réalité se cache derrière lui. Si le mot est clair, la chose ne l’est pas. Bien sûr, on peut tenter de définir le temps et les philosophes n'ont pas manqué de le faire : le temps est ce qui passe quand rien ne se passe, il est ce qui fait que tout se fait ou se défait, il est l’ordre des choses qui se succèdent, il est le nombre du mouvement selon l'avant et l'après, il est le devenir en train de devenir. Mais toutes ces expressions contiennent déjà l'idée du temps (par exemple, l’idée de « passage » présuppose l’idée d’une temporalité, c’est-à-dire de quelque chose qui s’écoule). Elles ne sont donc que des métaphores du temps, impuissantes à rendre compte de sa véritable nature. Cela n'est pas très grave, car il n'est pas nécessaire de définir le temps pour en proposer une représentation. De fait, les physiciens sont parvenus à en faire un concept opératoire sans être capables de le définir précisément.

    La physique et le temps
    Y flairant une source de paradoxes, les philosophes n’ont cessé d’interroger la réalité du temps, et ce depuis l’Antiquité grecque. Souvenons-nous par exemple de la solution avancée par Parménide et les Éléates, qui proposaient de confondre la matière et l'espace, excluant par là même le vide et se trouvaient contraints de penser le mouvement comme une simple translation, c'est-à-dire comme une succession de positions fixes. Du coup, le temps leur demeurait inexplicable, et c'est pourquoi ils s'attachaient à le démontrer impossible et à tout décrire à partir de l'immobilité. Souvenons-nous également de Héraclite et des atomistes, qui prirent un autre parti : ils proposaient de confondre la matière avec le mouvement et affirmaient la réalité du vide. Selon eux, tout est mobile, tellement mobile même qu'on ne peut pas imaginer de point fixe pour évaluer les changements d'état ni expliquer quoi que ce soit.
    L'influence de Parménide a été très forte en physique. En effet, la physique a longtemps cherché à éliminer le temps. Le temps est associé au variable, à l’instable, à l'éphémère, tandis que la physique, elle, est soi-disant à la recherche de rapports qui soient soustraits au changement. Lors même qu’elle s’applique à des processus qui ont une histoire ou une évolution, c’est pour y discerner soit des substances et des formes, soit des lois et des règles indépendantes du temps. Mais dans sa pratique, elle se heurte évidemment au temps, d'une façon telle que la question de savoir si le monde doit être vu plutôt comme un système ou plutôt comme une histoire continue de se poser. La physique a-t-elle vocation à décrire l'immuable ou bien doit-elle être la législation des métamorphoses ?

    Le temps existe-t-il ?
    Aristote a posé la question de l'existence du temps d'une façon qui a été abondamment discutée : puisque le passé n'est plus, puisque que l'avenir n'est pas encore, puisque le présent lui-même a déjà fini d'être dès qu’il a commencé d’exister, comment pourrait-il y avoir un « être » du temps ? Le temps a beau contenir la totalité de ce qui est, nous ne parvenons pas à le penser autrement que comme une limite toujours disparaissante entre deux néants, le passé d'un côté, l’avenir de l'autre. Mais un être qui n’est qu’en cessant d’être, est-ce encore un être ?
    Si l’on peut ainsi s’interroger sur l’existence même du temps, il est en revanche très difficile de dire le monde sans faire appel à lui, et tout aussi difficile de nier les marques indélébiles qu’il imprime sur les choses et sur nos propres corps. Le temps se présente à nous d'une façon ambiguë : d'une part, il est ce qui fait que les choses persistent à être (on pourrait donc dire, plus plaisamment, qu'il est le moyen le plus commode qu'a trouvé la nature pour que tout ne se passe pas d'un seul coup) ; d'autre part, il est ce qui les fait changer. Le présent, qui est finalement la seule chose qui nous soit présente, a en effet ceci de paradoxal qu'étant à la fois toujours présent et jamais le même, de sorte que l'on doit admettre qu'il imbrique la permanence et le changement.
    Une difficulté soulevée par la question du temps consiste en ce que nous ne pouvons pas nous mettre en retrait par rapport à lui. D’habitude, lorsque nous voulons étudier un objet, nous commençons par l’observer sous divers angles, mais lorsqu’il s’agit du temps, la mise à distance n’est plus possible puisqu’il nous affecte sans cesse. Nous sommes dans le temps et nous ne pouvons pas en sortir. C’est d’ailleurs une caractéristique que le temps partage avec l’espace puisque nous ne pouvons pas non plus nous extraire de l’espace. Mais il y a une différence essentielle entre le temps et l’espace : nous pouvons nous déplacer à l’intérieur de l’espace, aller et venir dans n’importe quelle direction, alors que nous ne pouvons pas changer notre place dans le temps. L’espace est donc le lieu de notre liberté, le temps la marque de notre emprisonnement.
    Je cesserai là mes petites digressions philosophiques, par manque de temps d'abord, mais aussi parce que les historiens des sciences s'accordent à dire que la physique moderne a commencé avec Galilée, qui justement prit garde à ne pas se perdre en vaines discussions à propos de la nature ou de la réalité du temps. Il ne s'intéressa qu'au statut qu'il convenait de lui donner dans le champ de la physique. Cela l'amena à considérer le temps comme une grandeur quantifiable susceptible d'ordonner des expériences et de les relier mathématiquement. C'est dans cet esprit qu'il étudia la chute des corps. Il réalisa que si le temps, plutôt que l'espace parcouru, était choisi comme le paramètre fondamental, alors la chute des corps obéissait à une loi simple : la vitesse acquise est simplement proportionnelle à la durée de la chute. Cette découverte signa la naissance de la dynamique moderne, qui allait donner au temps un statut inédit. Jusqu'alors, l'idée que l'on s'était faite du temps était restée centrée sur des préoccupations humaines. Le temps servait essentiellement aux hommes de moyen d'orientation dans l'univers social et de mode de régulation de leur coexistence, mais il n'intervenait pas de façon explicite et quantitative dans l'étude des phénomènes naturels.

    Temps physique et temps psychologique
    Puisqu'elle est limitée dans ses ambitions, la physique ne prétend pas répondre à toutes les questions qui concernent le temps. Par exemple, elle échoue à rendre compte de la relation entre le temps physique et le temps psychologique, entre le temps des horloges et celui de la conscience. Ces deux temps ont certainement des liens, mais certaines de leurs propriétés sont distinctes, voire antagonistes. Déjà, leurs structures diffèrent. Le temps physique est toujours représenté comme un mince filament qui s'écoule identiquement à lui-même. Mais le temps subjectif, lui, se déploie en ligne brisée, entremêle des rythmes différents, des discontinuités, de sorte qu'il ressemble plutôt à un cordage tressé. Notre conscience éprouve en effet plusieurs temporalités enchevêtrées, tant par leur nature (le temps de nos sensations, celui de nos idées, de nos humeurs,…) que par leurs échelles, tout comme une corde est faite de multiples brins, eux-mêmes composés de fines et courtes fibres.
    Temps physique et temps psychologique se distinguent aussi par le fait que le premier, toujours ponctuellement concentré dans le présent, sépare l’infini du passé de l’infini du futur tandis que le second mélange au sein du présent un peu du passé récent et un peu de l’avenir proche. Dans le temps physique, des instants successifs n’existent jamais ensemble, par définition. Le temps psychologique, lui, élabore une sorte de coexistence au sein du présent du passé immédiat et du futur imminent (1). Il unit donc ce que le temps physique ne cesse de séparer, il retient ce qu’il emporte, inclut ce qu’il exclut, maintient ce qu’il supprime. Ainsi, lorsqu’on entend une mélodie, la note précédente est « retenue » avec la note présente et la projection de la note future pour former un ensemble harmonieux. Passé immédiat et futur imminent coexistent donc dans le présent. Sans cette alliance au sein de la conscience, chaque note serait isolée et il n’y aurait pas de mélodie à proprement parler.
    Temps physique et temps psychologique se distinguent également par leur fluidité. Le premier s'écoule uniformément (du moins dans la conception classique) tandis que le deuxième a une fluidité si variable que la notion de durée éprouvée n'a qu'une consistance très relative : il n'y a pas deux personnes qui, dans un temps donné, compteraient un nombre égal d'instants. Notre estimation des durées varie avec l’âge, et surtout avec l'intensité et la signification pour nous des événements qui se produisent (2).  Rien de tel pour le temps physique, et c'est bien pourquoi nous portons des montres.
    Enfin, les temps physique et psychologique n'accordent pas des statuts semblables aux notions de passé et d'avenir. C'est la question de la flèche du temps, sur laquelle nous reviendrons par la suite. Ce que je veux dire dans un premier temps, c'est que l'irréductibilité des temps physique et psychologique semble insurmontable, du moins pour le moment. On se doute bien que leurs liens se situent à la couture de la matière et de la vie, mais les tentatives pour dériver le temps du « monde » du temps de « l'âme » ou l'inverse n’ont pas vraiment abouti. Le temps mathématisé du physicien ne semble pas épuiser le sens du temps vécu, pas plus que le temps vécu ne donne l'intuition de toutes les facettes du temps physique.
    À force de schématisation, la physique a peut-être laissé échapper quelques-unes des propriétés fondamentales du temps. Le temps monotone des physiciens, constitué de tic-tac répétitifs et esseulés, n'est peut-être qu'une idéalisation très appauvrie du temps de la vie.

    L'écoulement du temps pourrait-il être discontinu ?
    Tout au long de son histoire, la physique a considéré que l'espace est un continuum, c'est-à-dire qu'il est possible d'envisager des portions de longueurs aussi petites que l'on veut, sans jamais atteindre de limite. Le point, qui correspondrait à un nombre infini de divisions, reste toutefois hors d'atteinte, mais on peut en principe s'en rapprocher continûment. Le fait qu'il soit ainsi possible de considérer des longueurs infimes, et même nulles, fait surgir d'énormes difficultés, par exemple lorsque l'on s'intéresse au champ électrique produit par une charge électrique, disons un électron, à la distance r de celui-ci. Ce champ, variant comme 1/ r2, devient infini lorsque la distance r s'annule. De telles divergences ou singularités conduisent à des difficultés mathématiques que les physiciens tentent d'éviter de différentes façons : soit en assignant un domaine de validité limité aux expressions divergentes (on supposera pour l'exemple cité ci-dessus que, si la distance r devient trop petite, l'expression en 1/ r2 doit être remplacée par une autre, non divergente) ; soit en utilisant des procédés mathématiques qui abolissent « artificiellement » ces divergences et autorisent le calcul. On peut citer par exemple la théorie des distributions, être mathématiques ressemblant à des fonctions discontinues qui prendraient une valeur nulle en tous les points de l'espace, sauf en un seul. On peut également évoquer la procédure dite de renormalisation. Celle-ci consiste à éliminer toutes les quantités infinies qui apparaissent dans les calculs en retranchant à celles-ci un petit nombre de quantités elles-mêmes infinies, de sorte d'obtenir un résultat fini.
    Une dernière piste, plus audacieuse, consiste à imaginer que l'espace lui-même pourrait être discret, c'est-à-dire structuré selon un réseau, dont la maille, finie et non nulle, représenterait une distance minimale au-dessous de laquelle il serait impossible de descendre. Toute divergence serait ainsi évitée. Mais là aussi, de terribles problèmes se posent. D'abord, quelle serait la taille de la maille et d'où proviendrait-elle ? Ensuite, un tel réseau introduirait des directions privilégiées qui détruirait l'isotropie de l'espace, c'est-à-dire son invariance par rotation. Or cette invariance joue, avec d'autres symétries du même type, un rôle fondamental dans toute la physique en imposant des lois de conservation très contraignantes.
    Des travaux mathématiques récents, notamment effectués par Alain Connes dans les années 1980, pourraient toutefois changer la donne. Ils concernent ce qu'on appelle la géométrie non commutative. Celle-ci permet de considérer des structures spatiales qui présentent un caractère discontinu mais qui ne brisent pas les symétries fondamentales. Cette nouvelle géométrie est obtenue en remplaçant les coordonnées spatiales usuelles, qui sont des nombres ordinaires, par des opérateurs algébriques. L'appellation de la théorie provient de ce que ces opérateurs ne commutent pas entre eux (l'ordre de leur application n'est pas indifférent), mais vérifient au contraire certaines relations de commutation qui définissent les propriétés de l'espace à petite échelle. Les propriétés habituelles de l'espace étant restituées aux échelles de la physique habituelle, ce n'est qu'au-dessous d'une certaine échelle que les effets de cette géométrie apparaissent. Cette échelle, qui pourrait être celle dite de Planck (10-35 m), représenterait une limite à la divisibilité de l'espace.
    Mais revenons-en au temps. Les physiciens le supposent constitué d'instants qui se succèdent dans une structure continue. Ces instants jouent pour le temps le même rôle que le point pour l'espace. Ils sont tout aussi inaccessibles à la perception. En effet, nous ne sentons pas les instants qui passent. Pour nous, ainsi que nous l'avons déjà dit, le présent est une sorte de fluide continu qui mélange un peu du passé immédiat et du futur imminent, sans qu'aucune de nos sensations ne vienne indiquer l'alchimie par laquelle une succession d'instants parvient à s’épaissir en durée. L'idée d'un temps discontinu, c'est-à-dire d'une atomicité de la durée, est parfois évoquée, mais aucune théorie n'est jamais venue l'éclairer, du moins à ma connaissance. Il faut dire qu'elle pose d'énormes difficultés conceptuelles : comment le temps pourrait-il être constitué d'instants séparés par des durées privées de temps ? L'impossibilité d'observer les instants ne va en tous cas pas contre l'idée d'un temps continu, de la même façon que l'absence d'objet véritablement ponctuel ne va contre la possibilité d'un espace continu.

    La causalité et l’interdiction des voyages dans le temps
    Le mouvement des aiguilles de nos montres incite à assimiler le temps à un flux composé d'instants infiniment proches parcourus les uns après les autres, c'est-à-dire à une variable à une seule dimension. Cette représentation du temps accorde au temps une topologie beaucoup plus pauvre que celle de l’espace, qui lui a trois dimensions. Elle n'offre en fait que deux variantes, la ligne ou le cercle, selon que la courbe du temps est ouverte ou fermée. Il n’y a donc a priori que deux types de temps possibles, le temps linéaire et le temps cyclique. Le cours du temps se manifeste sur ces courbes par le fait qu'elles sont orientées, c'est-à-dire parcourues dans un sens bien défini, du passé vers le futur.
    Si les physiciens ont choisi d'adopter un temps linéaire plutôt que cyclique, c'est en vertu du principe de causalité selon lequel la cause d'un phénomène est nécessairement antérieure au phénomène lui-même. Ce principe de causalité interdit en outre les voyages dans le temps, car ceux-ci permettraient en principe de rétroagir dans le passé pour modifier une séquence d’événements ayant déjà eu lieu. Une telle possibilité conduirait à affronter de pénibles situations : un jeune homme pourrait rejoindre dans le passé sa grand-mère alors que celle-ci est encore jeune, lui faire un brin de cour au volant d'une belle voiture de sport, rater un virage et expédier la jeune femme ad patres, l'empêchant ainsi de mettre au monde le premier maillon de la descendance dont le susdit jeune homme fait pourtant partie… Un tel paradoxe, possible avec un temps cyclique puisque ce qu’on appelle la cause pourrait tout aussi bien être l’effet et vice versa, ne l'est pas avec un temps linéaire, celui-ci ordonnant les événements selon un enchaînement chronologique irrémédiable. On en peut pas à la fois aller vers le passé et vers l'avenir. De même qu'un fleuve coule toujours dans le même sens, de l'amont vers l'aval, le temps a un cours bien défini, s'écoulant du passé vers l'avenir, sans jamais rebrousser chemin ni faire de boucle, de sorte qu'un instant donné ne peut jamais se reproduire…
    Le principe de causalité se décline de différentes façons selon les théories physiques. Il ne renvoie pas toujours explicitement à l'idée de cause, se contentant parfois d'imposer une chronologie obligatoire entre certains types d'événements. Mentionnons rapidement, à titre d'illustrations, la façon dont il est pris en compte en relativité (restreinte ou générale) et en physique quantique.
    En relativité restreinte
    Le principe de causalité est garanti par l'impossibilité de transmettre de l'énergie ou de l'information à une vitesse supérieure à celle de la lumière. Cette impossibilité interdit les voyages dans le temps et les renversements de chronologie.
    En relativité générale
    La causalité est violée s’il existe une boucle temporelle, c’est-à-dire une ligne d’univers refermée sur elle-même. La théorie prévoit que de telles boucles pourraient apparaître derrière l’horizon de trous noirs en rotation très rapide, mais rien ne garantit qu'elles existent.
    En physique quantique non relativiste
    La causalité est inscrite dans l’équation de Schrödinger qui fait jouer au Hamiltonien le rôle de générateur infinitésimal des translations dans le temps. Il s’agit d’une causalité sans cause explicite.
    En théorie quantique des champs
    Les contraintes de la causalité s’expriment au moyen des règles de commutation des opérateurs de champs. Un opérateur de création Ф*(x) d’une particule au point x et l’opérateur d’annihilation de cette même particule Ф(y) au point y doivent commuter pour une séparation du genre espace et ne pas commuter pour une séparation du genre temps. Ces règles empêchent une particule de se propager sur une ligne du genre espace (la particule se propagerait plus vite que la lumière) et imposent, pour une propagation sur une ligne du genre temps, que la création d’une particule précède son annihilation. Ces contraintes ne peuvent être satisfaites que si la décomposition en ondes planes des opérateurs de champs contient des fréquences négatives, correspondant à des antiparticules. L’antimatière est donc la trace « matérielle » du fait que le temps passe en sens unique.
    D'une façon générale, le principe de causalité s'exprime par le biais de ce que l'on appelle l'invariance CPT, sur laquelle nous allons nous attarder.
    L'invariance CPT
    Certaines symétries géométriques nous sont familières. D’autres, plus abstraites, sont couramment invoquées par les physiciens. C'est le cas de la « parité », de la « conjugaison de charge », et du « renversement du temps ».
    La parité est une opération, notée P, qui consiste à regarder l'image d'une expérience donnée dans un miroir. Prenons l’exemple d'une expérience réelle mettant en jeu une collision entre particules. Appliquer l'opération P à une telle situation consiste à réaliser par la pensée l'expérience telle qu'elle serait vue dans un miroir. La nature des particules mises en jeu reste la même. En revanche, leurs positions sont modifiées puisque droite et gauche sont inversées dans l'opération.
    La question se pose évidemment de savoir si, une fois cette opération réalisée, la nouvelle expérience peut ou non se réaliser dans la nature ou en laboratoire. Si la réponse est oui, on dira que l'expérience respecte la symétrie P. Dans le cas contraire, on dira qu'elle la viole.
    À toute particule est par ailleurs associée une antiparticule, de même masse qu'elle et dont toutes les charges, notamment la charge électrique, sont opposées à celle de la particule correspondante. La conjugaison de charge est précisément l'opération qui consiste à transformer (sur le papier) une particule en son antiparticule, et vice versa. Par exemple, elle transforme l'électron en positron et le positron en électron, le proton en antiproton et l'antiproton en proton. Cette opération est notée C, pour « charge », en raison de l'inversion des charges entre particule et antiparticule.
    Partons à nouveau d'une expérience réelle mettant en jeu une collision entre particules. Enregistrons soigneusement les vitesses et les positions de chacune des particules qui interviennent tout au long de l'expérience. Appliquons maintenant l'opération C : à chaque fois que l'on rencontre une particule, on la remplace par son antiparticule et on lui impose de suivre exactement la même trajectoire que celle qu'avait la particule dans la situation initiale. Si par exemple on regarde une collision entre un proton et un neutron, l'opération C nous décrira la « même » collision, sauf qu'elle se produira entre un antiproton et un antineutron. Si, une fois cette opération accomplie, la nouvelle expérience peut se réaliser, on dira que l'expérience respecte la symétrie C. Dans le cas contraire, on dira qu'elle la viole.
    Enfin, l'opération « renversement du temps », notée T, correspond à un renversement du mouvement plutôt qu'à une inversion du temps proprement dit. Elle consiste à dérouler un phénomène dans le sens inverse de celui dans lequel il s'est produit, autrement dit à passer le film à l'envers. Selon les lois classiques, si à un instant donné t0, pris comme origine des temps ( t0 = 0), les vitesses de chaque astre du système solaire (Soleil, planètes et leurs satellites) étaient renversées, leur trajectoire ne serait pas modifiée, mais la position de chaque astre sur sa trajectoire à l'instant ultérieur t serait celle qu'il occupait à l'instant -t.
    La parité, la conjugaison de charge et le renversement du temps jouent un rôle fondamental dans les équations que manient les physiciens des particules, par le biais de l'invariance CPT : comme son sigle l'indique, l'opération CPT est le produit des trois opérations C, P et T. Cette opération ne modifiant aucune des lois connues de la physique, on parle d'invariance CPT.
    En langage imagé, l'invariance CPT se traduit en disant que les lois physiques qui gouvernent notre monde sont identiques à celles d'un monde d'antimatière observé dans un miroir et où le temps s'écoulerait à l'envers. Fondamentalement liée au principe de causalité, qui ordonne les événements selon un enchaînement irrémédiable, elle a notamment comme conséquence une sorte de symétrie entre la matière et l'antimatière. En particulier, elle prévoit que la masse et la durée de vie des particules sont rigoureusement égales à celles de leurs antiparticules.
    L’interaction faible et les kaons neutres
    Pendant longtemps, les physiciens, s'appuyant sur le sens commun, crurent que toutes les lois de la physique respectaient la symétrie P. N'est-il pas évident, lorsque nous voyons un arrangement d'objets dans un miroir, que nous pourrions réaliser cet arrangement dans la réalité aussi ? Pourtant, il fut démontré en 1957, à la surprise générale, que l'interaction nucléaire faible, responsable notamment de la radioactivité  par laquelle un neutron se désintègre en un proton et un électron, ne respecte pas la symétrie P. Autrement dit, l'image dans un miroir d'un phénomène régi par l'interaction faible correspond à un phénomène qui n'existe pas dans la nature et qu'on ne peut pas non plus produire en laboratoire. Cette violation de la parité, apanage de l'interaction faible, permet de définir de façon absolue la droite et la gauche.
    On démontra dans le même temps que l’interaction faible violait également l’invariance par conjugaison de charge, d’une façon telle que la symétrie globale PC était, elle, préservée. Cette invariance par CP, combinée à l’invariance CPT, impliquait l‘invariance par T. Ce résultat rassurant ne tint que quelques années. En 1964, une expérience révéla que l’invariance par PC est elle aussi brisée, même si ce n’est que très légèrement, lors de la désintégration (par l’interaction faible) de particules étranges qu’on appelle les kaons neutres. Ces particules sont les seules pour lesquelles une telle dissymétrie ait jamais été observée. Mais alors, CPT étant toujours conservée, si PC ne l’est pas en l’occurrence, c’est que T ne l’est pas non plus, mais cette violation n’avait pas été mise en évidence directement.
    Une expérience du CERN, baptisée CPLEAR, a apporté en 1998 une pierre décisive à ce débat. Elle a permis de mettre en évidence, de façon directe, une violation de la symétrie temporelle au sein d’un système microscopique particulier, celui formé par un kaon neutre et son antiparticule. Il est établi depuis longtemps qu’un kaon neutre se transforme au cours du temps en sa propre antiparticule, qui à son tour se retransforme en kaon neutre. Ce que l’expérience CPLEAR vient de mettre en évidence, c’est que la vitesse à laquelle un kaon neutre se transforme en son antiparticule n’est pas exactement la même que celle du processus inverse, contrairement à ce que la symétrie T prévoit. C’est la première fois qu’est mesurée directement une différence entre un processus microscopique et le processus inverse. L’origine profonde de cette légère brisure de la symétrie temporelle passé-futur demeure mystérieuse.

    La question de la flèche du temps
    Pour nous, passé et futur ne sont pas équivalents. Par exemple, nous nous souvenons en partie du passé, mais pas du tout de l’avenir. Cette asymétrie entre passé et futur est la manifestation du cours même du temps. Depuis Newton, les physiciens se demandent si cette distinction existe également au niveau des phénomènes physiques. Font-ils eux aussi la distinction entre le passé et l'avenir ?
    Pensons à une table de billard sur laquelle nous faisons entrer deux boules en collision. Après le choc, les deux boules repartent dans des directions opposées. Si les frottements sont négligeables, leurs vitesses resteront constantes. Imaginons que nous ayons filmé la collision et que nous projetions le film à l’envers. Cela équivaut à échanger les rôles respectifs du passé et de l’avenir, c’est-à-dire à inverser le cours du temps. Ce que l’on voit alors à l’écran, c’est une autre collision de deux boules, correspondant à la collision qui s’est réellement produite mais avec toutes les vitesses inversées.
    Le point important est qu'un spectateur qui ne verrait que la projection du film inversé serait tout à fait incapable de dire si ce qu’il voit correspond à ce qui s’est réellement passé ou si le film a effectivement été retourné. La raison de cette ambiguïté est que la deuxième collision est régie par les mêmes lois dynamiques que la première. Elle est donc tout aussi « physique », au sens où elle est tout aussi réalisable que la collision originale. Autrement dit, une telle collision est « réversible ». Sa dynamique ne dépendant pas de l’orientation du cours du temps, elle ne fait aucune distinction entre le passé et l’avenir. Cela signifie, non pas qu'elle autorise les voyages dans le temps, mais que pour elle le cours du temps est arbitraire.
    Selon la physique d’aujourd’hui, tous les phénomènes ayant lieu au niveau microscopique sont comme ces collisions de boules de billard, c'est-à-dire réversibles. Or à notre échelle, nous n'observons que des phénomènes irréversibles, à commencer par le fait que nous vieillissons : si nous filmons une scène de la vie courante et projetons le film à l’envers, nous voyons dès les premières images qu’il y a eu inversion (le plongeur est expulsé de la piscine et se retrouve bien sec sur son plongeoir). A l'échelle macroscopique, le temps ne fait donc pas que passer : il invente, il crée, il use, il détruit, sans jamais pouvoir refaire ce qu'il a défait.
    Comment expliquer l’émergence de cette irréversibilité observée à l’échelle macroscopique à partir de lois physiques qui l’ignorent à l’échelle microscopique ? Ce problème, dit de « la flèche du temps » a été ardemment discuté depuis deux siècles. La plus ancienne explication s'appuie sur l'irréversibilité associée au second principe de la thermodynamique, selon lequel l'entropie d'un système isolé ne peut qu'augmenter au cours du temps : de même que de l'eau tiède ne redevient jamais une juxtaposition d'eau chaude et d'eau froide, un système macroscopique qui évolue ne peut revenir à sa configuration initiale. Plus récemment, des physiciens ont suggéré que la flèche du temps proviendrait plutôt de l'expansion même de l'univers, qui orienterait tous les processus physiques selon un cours irréversible. D'autres pistes faisant référence à la physique quantique ou à la physique des particules ont également été proposées. Toutefois, aucune de ces explications ne peut être présentée comme universelle et définitive. Il semble donc qu'il n'y ait pas d'unité théorique autour du concept de temps, comme si deux façons de penser ne cessent de s'affronter, celle qui se fonde sur l'histoire et le temps, et celle qui se fonde sur l'invariance et l'absence de temps. Elles correspondent peut-être à deux composantes contradictoires mais inséparables de notre effort pour comprendre le monde : nous ne pouvons pas penser le monde sans le temps et nous ne savons pas le raconter sans imaginer qu’il monnaie quelque invariance.
    (1) - Les spécialistes des neurosciences expliquent que la conscience fonctionne par séquences de trois secondes, pendant lesquelles un ensemble de données restent présentes simultanément à l’esprit.
    (2) - « Plus le temps est vide et plus il nous pèse », remarquait Vladimir Jankélévitch. Ce constat suffit à différencier le temps des objets ordinaires de la mécanique.



    Etienne KLEIN : Physicien français, Directeur de recherches au CEA

    Étienne Klein est un physicien français né en 1958. Il est ancien élève de l'École centrale Paris et a obtenu un DEA de physique théorique. Il a par la suite effectué un doctorat en philosophie des sciences et obtenu une Habilitation à diriger des recherches (HDR).

    Occupations
    Étienne Klein est directeur de recherches au CEA. Il dirige actuellement le Laboratoire de Recherches sur les Sciences de la Matière, installé à Saclay. Il a participé à divers grands projets, en particulier la mise au point du procédé de séparation isotopique par laser et l'étude d'un accélérateur à cavités supraconductrices. Au CERN, il a participé à la conception du grand collisionneur de particules européen, le LHC.

    Il a enseigné pendant plusieurs années la physique quantique et la physique des particules à l'École Centrale Paris, et est actuellement Professeur de philosophie des sciences. Il est spécialiste de la question du temps en physique, et l'auteur de nombreux ouvrages de vulgarisation. Il est par ailleurs membre du Conseil d'Analyse de la Société, dirigé par Luc Ferry, et du conseil scientifique de l'Office parlementaire d'évaluation des choix scientifiques et technologiques (OPECST). Il est membre du conseil d'orientation de l'Institut Diderot.

    Honneurs
    - Chevalier de la Légion d'Honneur (promotion du 1 janvier 2010)
    - Officier dans l'Ordre des Palmes Académiques
    - Prix Jean Perrin de popularisation de la science de la Société Française de Physique (1997)
    - Prix Grammaticakis-Neumann décerné par l'Académie des sciences (2000)
    - Prix du Budget décerné par l'Académie des sciences morales et politiques (2000)
    - Prix Jean Rostand (2004)
    - Prix Thorel décerné par l'Académie des sciences morales et politiques (2010)

    Biographie, Ouvrages, Liens sur Wikipedia : Page Étienne Klein sur Wikipedia


    Les ouvrages d'Etienne Klein sur le site de la Fnac : Etienne KLEIN sur Fnac.com


    Discours sur l'origine de l'univers - Etienne Klein
    D´où vient l'univers ? Et d'où vient qu'il y a un univers ? Irrépressiblement, ces questions se posent à nous. Et dès qu´un discours prétend nous éclairer, nous tendons l´oreille, avides d´entendre l´écho du tout premier signal : les accélérateurs de particules vont bientôt nous révéler l´origine de l´univers en produisant des « big bang sous terre » ; les données recueillies par le satellite Planck nous dévoiler le « visage de Dieu » ; certains disent même qu´en vertu de la loi de la gravitation l´univers a pu se créer de lui-même, à partir de rien... Le grand dévoilement ne serait donc devenu qu´une affaire d´ultimes petits pas ? Rien n´est moins sûr... Car de quoi parle la physique quand elle parle d´« origine » ? Qu´est-ce que les théories actuelles sont réellement en mesure de nous révéler ? À bien les examiner, les perspectives que nous offre la cosmologie contemporaine sont plus vertigineuses encore que tout ce que nous avons imaginé : l´univers a-t-il jamais commencé ? - Discours sur l'origine de l'univers - Etienne Klein

    Les tactiques de Chronos - Etienne Klein
    Le temps est une " chose " introuvable dont l'existence ne fait aucun doute.
    Une " chose " dont tout le monde parle mais que personne n'a jamais vue. Nous voyons, entendons, touchons, goûtons dans le temps, mais non le temps lui-même. Contre toute attente, Chronos est un planqué, un caméléon qu'il faut débusquer sous nos habitudes de langage et de perception. Pour le déjouer, il va falloir l'effeuiller peu à peu, le déshabiller, le distinguer de ses effets les plus sensibles : la durée, la mémoire, le mouvement, le devenir, la vitesse, la répétition.
    Parce que les horloges ne mesurent pas forcément du temps. Parce que le temps est toujours là alors qu'on dit qu'il s'écoule. Et qu'il existe indépendamment de ce qui survient, se transforme, vieillit et meurt. Aujourd'hui, le regard le plus audacieux et le plus déconcertant sur le temps, c'est la physique qui le porte. De Galilée à Einstein, puis de l'antimatière aux supercordes, elle n'a cessé d'approfondir la question jusqu'à ouvrir des perspectives qui donnent le vertige : le temps a-t-il précédé l'Univers ? Comment s'est-il mis en route ? Pourrait-il inverser son cours ? l'interrompre puis le reprendre ? Existerait-il plusieurs temps en même temps ? Au bout du compte, le temps pourrait ne plus du tout se ressembler.
    Les tactiques de Chronos - Etienne Klein

    Source Canal-U - UTLS - Mission 2000 en France : "Le temps, son cours et sa flèche" par Etienne KLEIN

    OnlyZenTV : Education - Innovation - Création - We are sure ! Together we can Change the World ...
    Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ...
    Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV

    mercredi 12 janvier 2011

    La Compétition entre Ordre et Désordre : Pourquoi la matière change-t-elle d'état - Edouard BREZIN - Symétries et symétries brisées - 69 mn - UTLS - 2000




    220e conférence de l'Université de tous les savoirs donnée le 7 août 2000
    "Pourquoi la matière change-t-elle d'état : la compétition entre ordre et désordre" par Edouard BREZIN
    Disciplines : Matériaux, Physique
    Classification Dewey : Etats de la matière, Physique moléculaire, atomique, nucléaire, quantique
    Producteur - Réalisateur : Mission 2000 en France - Durée du programme : 69 mn - Date de réalisation : 07/08/2000

    "Les changements d'état de la matière, sous l'effet d'une élévation ou d'un abaissement de température, sont des phénomènes bien familiers. De même, on connaît depuis longtemps des substances dont la structure ou encore les propriétés électriques ou magnétiques, se modifient de manière discontinue avec la température ; citons les études de Pierre Curie sur l'apparition ou la disparition de l'aimantation des oxydes de fer, ou encore celles qui concernent la supraconductivité. Or, si ces phénomènes sont bien quotidiens, ils n'en restent pas moins fort surprenants si l'on examine leur signification à l'échelle microscopique des atomes et molécules. La solidification d'un fluide se traduit, sous l'effet d'un minime abaissement de température, par la mise en un ordonnancement spatial régulier d'un grand nombre d'atomes, sans que rien ne soit venu modifier les forces qui régissent les interactions entre les constituants.
    Ces changements d'état sont dominés par des questions de symétrie : c'est ainsi que les forces entre atomes ne privilégient aucune direction particulière, et que pourtant, tant la cristallisation que l'apparition d'une aimantation par simple refroidissement, font apparaître des orientations bien déterminées. Le changement d'état est donc une brisure spontanée de symétrie : l'état du système est moins symétrique que les forces entre atomes constituants ne pouvaient le faire prévoir.
    Cette notion de symétrie brisée domine plusieurs branches de la physique de notre temps : au-delà des études de nouvelles phases de la matière évoquées ci-dessus, elle est présente dans la théorie moderne des interactions entre particules élémentaires, ou encore dans les modèles cosmologiques d'univers "inflationnistes primitifs"."

    Plan et découpage de la conférence d'Edouard BREZIN :
    - 01:59 - Présentation
    - 02:39 - Introduction
    - 17:34 - Le concept de symétries
    - 15:04 - Les symétries brisées
    - 11:57 - Les symétries du monde subnucléaire et de l'univers
    - 00:55 - Conclusion
    - 18:55 - Questions

    Texte de la 220e conférence de l'Université de tous les savoirs donnée le 7 août 2000 :
    "Symétries et symétries brisées : la compétition ordre-désordre et les changements d'état de la matière"
    par Édouard Brézin

      Introduction
      Le sentiment d'harmonie dégagé par les symétries des objets naturels ou fabriqués, a sans aucun doute accompagné l'homme depuis ses origines. Peut-être est-ce la quasi-identité des moitiés gauche et droite de nombreuses espèces vivantes qui a conduit à l'adoption de canons esthétiques, présents à l'évidence dans la vision des premiers architectes égyptiens et grecs. Plus près de nous les cinq polyèdres réguliers platoniciens, de par leur perfection et leur unicité, apparaissaient encore à Kepler comme le modèle indispensable régissant les distances au soleil des cinq planètes du système solaire connues en son temps (la découverte en 1781 d'une sixième planète, Uranus, ne laissait plus aucune place à ce rêve).
      Mais ce n'est qu'à partir de la fin du siècle dernier que, dépassant ces considérations géométriques et esthétiques, la symétrie s'est imposée progressivement comme instrument de compréhension de l'univers, et finalement, avec la notion contemporaine de symétrie locale, comme le concept premier et unificateur permettant de comprendre l'organisation de la matière, les interactions entre constituants élémentaires (électromagnétisme et forces nucléaires), et même la cosmologie de notre univers en inflation issu du big-bang initial. Le rêve de Kepler s'est en quelques sorte enfin réalisé : la symétrie détermine le monde.
      Le langage nous tend des pièges difficiles à éviter. C'est ainsi qu'à côté de symétrie-dissymétrie nous trouvons ordre et désordre qui leur sont étroitement associés. Mais que l'on y prenne garde, c'est à la symétrie qu'est associé le désordre, alors que l'ordre résulte de la symétrie brisée, qui n'est pas l'absence de symétrie, notion qu'il va donc nous falloir expliciter tout à l'heure.

      Le dix-neuvième siècle
      Deux pionniers de l'étude des symétries ont marqué le siècle dernier, Louis Pasteur et Pierre Curie. Ils nous laissé des concepts profonds, et des interrogations qui n'ont cessé de nous accompagner depuis lors.
      Les expériences du jeune Pasteur visaient à préciser la propriété connue de certains cristaux, tel le quartz, qui font tourner le plan de polarisation de la lumière. En 1848 Pasteur, chimiste d'exception avant de devenir le biologiste génial que tout le monde connaît, cherchait à préciser le lien entre cette activité optique et la structure des cristaux ; il remarqua que les cristaux de paratartrate de sodium étaient un mélange de deux « énantiomères », c'est à dire de petits cristaux qui étaient tantôt identiques, tantôt identiques à l'image des précédents dans un miroir (de même qu'une main droite n'est pas identique à une main gauche, mais simplement à l'image de celle-ci dans un miroir). Il montrait alors que chacun de ces deux types de cristaux, avait des propriétés optiques opposées, signe d'une chiralité moléculaire (du grec kheir main). Mais la découverte de Pasteur allait beaucoup plus loin, puisqu'elle mettait en évidence une différence fondamentale entre la matière inerte et la matière vivante. En effet la synthèse des paratartrates en laboratoire produisait des mésotartrates optiquement inactifs, qui se révélèrent être toujours des mélanges en parts égales des deux énantiomères, alors que la vie est profondément asymétrique puisque les cristaux de paratartrate, issus des dépôts dans le vin, étaient exclusivement lévogyres. Depuis la biochimie n'a cessé de nous révéler que les molécules constitutives du vivant, ADN, protéines, etc., étaient asymétriques, avec une homochiralité universelle : ainsi toutes les hélices constitutives de l'ADN tournent toujours dans le même sens, chez tous les êtres vivants.
      Comment expliquer une telle différence entre la biochimie et la chimie du monde inanimé ? C'est bien un mystère, car les processus physiques qui régissent la constitution des atomes et molécules ne distinguent pas la droite de la gauche : une réaction chimique et celle qui serait constituée par l'image ce cette dernière dans un miroir, ont des probabilités égales de se produire. Notons tout de même que, rompant avec une conception qui faisait de cette égalité un dogme, deux physiciens américains nés en Chine, T.-D. Lee et C.-N. Yang, formulèrent en 1956 l'hypothèse que les interactions nucléaires, responsables de la radioactivité bêta, n'étaient pas identiques à leur « image dans un miroir ». Cette non-conservation de la parité fut rapidement mise en évidence expérimentalement par la physicienne de l'université de Columbia Mme C.-S. Wu. Pour ne prendre qu'une image, cela signifie que nous avons bien la possibilité de faire connaître à des extra-terrestres (connaissant les lois de la nature !) ce que nous appelons la droite et la gauche. Cette légère asymétrie serait-elle suffisante pour expliquer cette surprenante homochiralité du vivant ? D'autres préfèrent imaginer que les fluctuations statistiques dans des populations d'énantiomères droits et gauches a priori égales, peuvent produire une inégalité accidentelle qui s'auto amplifie et conduit à l'homochiralité du vivant. (Pour ma part je crois que ce mécanisme ne saurait suffire, sans invoquer également le précédent). D'autres enfin, à la suite de J. Monod, voient dans cette homochiralité la preuve d'une origine unique commune à tous les êtres vivants. Il n'est pas question ici de trancher, mais on voit combien cette observation extraordinaire de Pasteur reste au cSur des préoccupations contemporaines sur l'origine de la vie.
      C'est l'étude de la piézoélectricité du quartz, cette propriété aujourd'hui si abondamment utilisée, par exemple dans nos montres à quartz, mise en évidence en 1888 par les frères Curie, qui conduisit Pierre Curie à formuler un principe de symétrie profond et général. Réfléchissant en effet sur le lien entre la direction de la polarisation électrique du cristal et celle des contraintes mécaniques qui lui donnent naissance, Pierre Curie postula que « lorsque certaines causes produisent certains effets, les éléments de symétrie des causes doivent se retrouver dans les effets possibles ». Malgré son aspect très formel ce principe est d'utilisation parfaitement opératoire, tout spécialement en présence de champs électriques et magnétiques. C'est ainsi qu'il implique qu'il n'est pas possible de réaliser des synthèses chimiques « asymétriques », privilégiant l'un des composés, droit ou gauche, de molécules possédant une chiralité déterminée, sous le simple effet d'un champ magnétique.
      Nous savons aujourd'hui que ce principe de Curie, pris au pied de la lettre, ne couvre pas le champ important des symétries brisées, et il est paradoxal de constater que l'une de ces premières brisures connues, celle de la transition paramagnétique-ferromagnétique, a été découverte également par P. Curie.

      Physique statistique : énergie et entropie
      Il nous faut donc venir au concept important de brisure spontanée de symétrie, et auparavant situer la compétition entre ordre et désordre qui régit l'organisation de la matière. Inscrite dans la thermodynamique, elle prit tout son sens lorsque Boltzmann et Gibbs établirent à la fin du siècle dernier les fondements de la physique statistique, science de la déduction des propriétés du monde macroscopique à partir des constituants élémentaires de la matière.
      Examinons un processus simple et familier comme le gel d'un liquide. Le solide ainsi formé possède une structure régulière dans laquelle les atomes ou molécules constitutives se rangent au sommet d'un réseau spatial périodique. (Remarquons au passage le lien étonnant entre mathématiques et physique en ce domaine : les symétries sont exprimées mathématiquement à l'aide de la théorie des groupes, c'est-à-dire de la théorie des opérations qui laissent un objet inchangé. Cette théorie conduit à montrer qu'il n'existe que 230 structures périodiques possibles pour ces arrangements spatiaux des molécules, et les cristallographes ont bien identifié des structures solides réalisant chacune de ces 230 possibilités. Il faut également observer que la nature sait déjouer les théorèmes mathématiques puisque aucune des structures permises ne possède de symétrie d'ordre cinq : or, à la surprise générale, on découvrit en 1984 un « solide » possédant une telle symétrie interdite. Ces structures bien identifiées aujourd'hui et appelées quasi-cristaux sont en fait parfaitement apériodiques). Si l'on tente d'imaginer le comportement des molécules constituantes lors de la solidification, le gigantisme du nombre de molécules contenues dans le moindre grain de matière rend le processus tout à fait stupéfiant. Une minuscule goutte d'eau est constituée de plusieurs milliards de milliards de molécules. Un infime abaissement de température de l'eau en dessous de 0°C, produit donc la mise en ordre spatial d'un nombre colossal d'objets sans que rien ne soit venu modifier ni les molécules ni les forces mutuelles d'interaction qui régissent leur comportement. Projetons en marche arrière le film de la fin d'un défilé au moment où tous les soldats s'éparpillent, et représentons nous un défilé imaginaire avec de très nombreux milliards de participants et nous aurons une image microscopique de la solidification.
      La transition solide-liquide est la manifestation de deux phénomènes antagonistes, qui mettent en jeu énergie et entropie. Dans cette matière macroscopique en effet, les configurations des molécules sont innombrables ; chacune d'entre elles est susceptible de se réaliser avec une petite probabilité, d'autant plus grande que son énergie est plus basse. À basse température, dans la phase solide donc, les configurations de basse énergie, très ordonnées spatialement pour autoriser les molécules à « profiter » de leur attraction réciproque, ont un poids dominant. En revanche à plus haute température, la multiplicité des configurations possibles conduit à rejeter les configurations ordonnées, à privilégier des configurations plus énergétiques, bien moins probables donc, mais si nombreuses que cette considération (identifiée par Boltzmann à l'entropie des thermodynamiciens) l'emporte. Comparons le liquide et le solide : le liquide est isotrope, aucune direction n'y est privilégiée. Il est également tout à fait homogène, identique en tous ses points. Le solide lui possède des axes cristallins privilégiés et des points qui servent de sommets au réseau périodique sur lequel sont venus se ranger les molécules. Il est donc, certes plus ordonné que le liquide, mais moins symétrique que lui puisque des opérations telles que des rotations ou des translations arbitraires qui ne changent rien au liquide, ne laissent pas le solide invariant. Cette brisure de symétrie, manifestée par l'ordre cristallin, est spontanée en ce sens qu'elle ne nécessite aucun agent extérieur, aucune interaction privilégiant des directions particulières.
      Pour visualiser de manière plus intuitive une brisure spontanée de symétrie, on peut considérer le flambement d'une poutre sous l'effet d'une charge excessive. Même si la pression exercée coïncide bien avec l'axe de la poutre, celle-ci finira par flamber de manière asymétrique si la pression dépasse un certain seuil. On voit donc que cela implique de compléter quelque peu le principe de Curie : la symétrie d'un état particulier résultant d'une cause déterminée, peut avoir moins de symétrie que cette dernière. Seul l'ensemble des états possibles sous l'effet de cette cause a la symétrie des effets qui l'ont provoquée.
      Un grand nombre des changements d'état de la matière résultent donc de ce phénomène de symétrie brisée. Les « aimants » permanents présentent une aimantation dans une direction spatiale bien déterminée qui disparaît au-delà d'une certaine température (celle-ci porte le nom de Curie qui avait découvert cette transition entre un état « ferromagnétique » aimanté et présentant une orientation, et un état « paramagnétique » désorienté et donc tout à fait isotrope). De nos jours la supraconductivité, la superfluidité, les phases des cristaux liquides, et bien d'autres changements d'états, n'ont cessé d'enrichir le catalogue des symétries spontanément brisées que présente l'organisation de la matière. Les défauts à l'ordre eux-mêmes (un solide, et toute structure ordonnée, possèdent des défauts) s'organisent d'une manière tout à fait caractéristique des symétries brisées présentes dans la structure.
      La compréhension du mécanisme de la compétition ordre-désordre (ou énergie-entropie) mise en jeu dans ces transitions s'est étendue sur de nombreuses décennies. Après de longues années d'interrogations inconclusives, les travaux de 1940 du physicien R. Peierls, qui avait fui le nazisme en Angleterre, montraient que la formulation statistique de la physique qui doit tant à Boltzmann, contenait bien la possibilité, la nécessité même, de transition de phase par brisure spontanée de symétrie. À la même époque, l'étude systèmatique par L. Landau en Union Soviétique, des types de symétrie et de leurs brisures spontanées, mettait en quelques sorte fin au problème. Landau introduisait le concept fort important de paramètre d'ordre qui permet de caractériser la transition de phase et les phénomènes singuliers qui l'accompagnent. Dans la phase symétrique, c'est-à-dire désordonnée, ce paramètre est nul. En revanche dans la phase ordonnée, c'est-à-dire de symétrie brisée, il prend une valeur non nulle spontanément, i.e. en l'absence de tout sollicitation extérieure.
      Mais le problème devait resurgir dans les années 60 par l'arrivée de moyens expérimentaux nouveaux, tels que les lasers ou la diffraction des neutrons, qui révélaient que la théorie développée par Landau, bien que souvent qualitativement en accord avec l'expérience, était en fait quantitativement erronée. Que l'on me permette de ne pas tenter d'exposer ici les travaux sur le groupe de renormalisation, qui permirent de résoudre ce problème (et bien d'autres à sa suite) et valurent à l'américain K. Wilson le prix Nobel de physique 1981.

      Symétries du monde subnucléaire
      Les concepts de symétrie, associée à des opérations qui laissent le système invariant, ont joué un rôle central dans les idées de la physique. Je me contenterai de citer, sans la développer ici, la contradiction entre les symétries galiléennes de la mécanique classique, et celles de Lorenz-Poincaré de l'électrodynamique de Maxwell. C'est elle qui conduisit Einstein à la relativité restreinte. Un peu plus tard Einstein, toujours guidé par le souci de décrire les lois de la physique de manière universelle, indépendante de l'état de mouvement des observateurs, aboutit par des considérations d'invariance, c'est-à-dire de symétrie, à la relativité générale, nouvelle théorie de la gravitation, base indispensable de la cosmologie contemporaine. Plus près de nous les quarks, éléments constitutifs de la matière « hadronique » (c'est-à-dire liée par des forces nucléaires fortes), ont été mis en évidence par les propriétés de symétrie présentées par la classification des particules élémentaires, une démarche qui rappelait l'élucidation de la structure des atomes à partir des régularités du tableau de Mendeleïev.
      Mais je voudrais tenter de décrire ici les idées très importantes de symétrie locale (plus couramment appelées symétries de jauge, même si cette dénomination n'est pas très éclairante) qui ont permis de comprendre à la période contemporaine les interactions entre particules élémentaires (électromagnétiques ainsi que nucléaires faibles et fortes). La symétrie n'est plus cette fois une simple propriété de la structure, mais l'élément qui permet de fixer entièrement la dynamique des forces électromagnétiques et nucléaires.
      En 1925 les travaux du physicien anglais P.A.M. Dirac établissaient une théorie de l'électron en interaction avec le rayonnement électromagnétique qui incorporait à la fois la nouvelle mécanique des quanta, la relativité et les équations de Maxwell de l'électromagnétisme. Le physicien-mathématicien H. Weyl réalisa que l'interaction entre les particules dotées d'une charge électrique et le rayonnement électromagnétique, telle qu'elle apparaissait dans la théorie de Dirac, résultait de manière unique d'une propriété de symétrie insoupçonnée. Renversant le raisonnement, cette symétrie de « jauge » est alors suffisante pour fixer la théorie de Maxwell-Dirac. Une explication précise demanderait un peu trop de formalisme. En quelques mots il faut savoir que les états d'une particule comme l'électron, sont décrits en mécanique quantique par une fonction d'onde qui est un nombre complexe en chaque point de l'espace-temps (on peut se représenter cela par un vecteur dans un plan associé à chaque point de l'espace-temps). La théorie ne change pas si on modifie cette phase de la même quantité pour tous les points de l'espace-temps (c'est-à-dire si on fait tourner tous ces vecteurs dans le plan du même angle). Cette première symétrie n'est pas tout à fait banale, puisqu'elle implique que la charge électrique est « conservée », c'est-à-dire que dans tout processus la charge finale est la même que la charge initiale.
      Peut-on modifier cette phase indépendamment pour chaque point de l'espace-temps ? A priori la réponse est négative, c'est-à-dire qu'en l'absence de champ électromagnétique, cette opération n'est certainement pas une symétrie de la théorie. Mais Weyl comprit que le champ électromagnétique avait précisément pour fonction d'instituer cette propriété d'invariance locale. Le champ résultant de cette invariance postulée obéit aux équations de Maxwell, et il introduit manifestement des interactions de portée infinie puisqu'il autorise de changer indépendamment les phases en des points arbitrairement espacés. Ce champ est constitué en termes quantiques de photons comme l'avait compris Einstein, particules sans masse, puisque porteuses d'une symétrie s'étendant à des distances arbitraires infinies (la portée est proportionnelle à l'inverse de cette masse).
      La généralisation de ces idées à des symétries plus complexes qu'une simple rotation de vecteurs dans un plan, fut l'Suvre de Yang et Mills en 1956. Y apparaissent d'autres champs de « jauge » que les photons, qui ne reçurent initialement guère d'attention car, pour les mêmes raisons, les particules associées étaient elles-aussi sans masse et donc les interactions médiées par ces champs de portée infinie. Les théoriciens en butte avec la compréhension des forces nucléaires, et en particulier les forces dites « faibles », responsables par exemple de la désintégration bêta de noyaux dotés d'un excès de neutrons, auraient volontiers adopter une théorie de Yang-Mills, mais la portée des forces nucléaires faibles ne dépassant guère quelques milliardièmes de milliardième de mètre, il paraissait impossible, absurde même, de vouloir les faire sortir d'une théorie dans laquelle la portée des interactions est arbitrairement grande. C'est la compréhension du mécanisme de symétrie brisée qui permit d'établir finalement cette théorie des interactions faibles, unifiée de surcroît avec la théorie de l'électromagnétisme (modèle de Weinberg-Salam et nombreux travaux dont ceux de T. Hooft et Veltman, prix Nobel 1999). On introduit, en plus des particules usuelles, un champ de matière supplémentaire, le « boson de Higgs » (toujours hypothétique et activement recherché expérimentalement). Dans une première phase symétrique, qui a peut-être existé pendant quelques infimes instants après le big-bang, le scénario de Yang-Mills avec tous ses champs de masse nulle était à l'Suvre, mais une brisure spontanée de symétrie, une transition de phase analogue à celle de la supraconductivité évoquée à propos de la matière macroscopique, faisait apparaître une nouvelle phase, celle de notre monde d'aujourd'hui, dans laquelle certains des champs de Yang-Mills devenaient massifs, comme il se devait pour être conforme aux observations. La découverte expérimentale des particules Z et W± au CERN dans les années soixante-dix, analogues aux photons dans leur rôle de porteurs d'une symétrie locale, mais massifs pour ne transmettre l'interaction que sur une courte portée, établissaient la validité de cette extraordinaire construction.

      Transitions de phase et cosmologie : les modèles d'univers en inflation
      Le scénario classique du « big-bang », univers en expansion adiabatique à partir d'une singularité initiale, a connu des succès multiples. Le plus notable est la prédiction, aujourd'hui abondamment confirmée, du rayonnement « fossile », abandonné à lui-même depuis des milliards d'années sans jamais interagir, dans lequel baigne l'univers. Mais diverses observations dont cette théorie devrait rendre compte, telles que la compréhension du rapport entre le nombre de particules massives et le nombre de photons observés aujourd'hui, ou encore la nécessité d'une courbure de l'univers excessivement faible dans les premiers instants du big-bang, ont conduit là aussi à invoquer un mécanisme de symétrie spontanément brisée à l'origine de notre univers. Ces modèles d'univers en inflation, proposés par l'américain A. Guth et le russe (de Stanford désormais) A. Linde, résolvent les problèmes mentionnés ci-dessus si l'on suppose que l'univers a connu une transition de phase avec une brusque augmentation d'entropie, dans laquelle notre espace-temps est apparu, un peu comme une bulle de vapeur dans un liquide à son point d'ébullition. Diverses variantes de cette idée sont aujourd'hui considérées, telle l'inflation chaotique qui suppose la formation d'une écume de bulles, sans connections causales mutuelles, évoluant chacune en différents types d'univers. Seule l'une d'entre elles serait devenu notre univers. La validation de ces divers scénarios repose sur leur capacité à reproduire les paramètres aujourd'hui observés de notre univers, et il est sans doute bien trop tôt pour conclure, mais les cosmologistes semblent très généralement devoir faire appel à une symétrie brisée pour modéliser l'évolution de l'univers.

      Conclusion
      Je suis conscient que ces quelques lignes doivent paraître souvent bien incompréhensibles. Je souhaiterais simplement que le lecteur qui m'aurait accompagné jusque-là, partage notre émerveillement devant un monde dont l'évolution et dont les forces en présence, sont presque exclusivement fixées par ses symétries et leurs brisures. Jamais un si petit nombre de principes n'avaient suffi à embrasser une telle diversité de situations. En définitive, à l'échelle des constituants élémentaires de la matière, seule la compréhension d'une théorie quantique de la gravitation échappe encore à cette construction.

      Lectures complémentaires
      Les actes du 4e colloque Physique et interrogations fondamentales, intitulé « Symétrie et brisure de symétrie » ont été publiés par EDP Sciences en 1999. Plusieurs contributions développent certains des thèmes évoqués ci-dessus.



      Edouard BREZIN : Physicien français, Membre et ancien Président de l'Académie des sciences

        Carrière
        Diplômé de l'École polytechnique (1958-1960), puis de l'ENPC (1963), ingénieur des ponts et chaussées, Édouard Brézin travaille au Commissariat à l'énergie atomique de 1963 à 1986. Il obtient le doctorat ès sciences à l'université de Paris en 1969. Il a été professeur à l'École polytechnique de 1974 à 2004. En 1989 il est nommé professeur à l'Université Paris VI mis à disposition de l'École normale supérieure. Il a été directeur du département de physique de l'ENS de 1986 à 1991 et président du Centre national de la recherche scientifique de 1992 à 2000. Il a été nommé membre senior de l'Institut universitaire de France en 1991 pour une durée de cinq ans.

        Membre de l'Académie des sciences française, il en a été président de 2005 à 2006. Il a présidé les États généraux de la recherche et de l'enseignement supérieur qui ont remis un rapport au gouvernement français en 2004 dans le but d'améliorer la situation de la recherche dans le pays.

        Diplômes
        - Ancien élève de l'École Polytechnique, Thèse de Doctorat d'État de l'Université de Paris en Physique Théorique.

        Parcours
        - 1997 : Membre du Conseil Scientifique de l'Institut Abdus Salam ICTP (Trieste).
        - 1995 : Président du Conseil Scientifique d'EDF.
        - 1992 : Membre du Comité à l'Énergie Atomique ; Administrateur de l'INSERM et de l'Institut Pasteur ; Président du Conseil d'Administration du CNRS.
        - 1991 : Professeur membre de l'Institut Universitaire de France ; membre du Laboratoire de Physique théorique de l'ENS.
        - 1986-1991 : Directeur du Département de Physique de l'Université Pierre et Marie Curie.
        - 1986 : Professeur de Physique à l'Université Pierre et Marie Curie (ENS).
        - 1974 : Professeur de Physique à l'École Polytechnique (exercice partiel).
        - 1963-1986 : Chercheur au service de physique théorique à Saclay.

        Prix
        - 1988 : Prix des trois physiciens déportés.
        - 1986 : Prix Gentner-Kastler (Société allemande et française de physique).
        - 1981 : Prix Ampère (Grand Prix de l'Académie des Sciences).
        - 1974 : Prix Langevin de physique théorique (Société française de Physique).

        Spécialités
        - Physique théorique, en particulier théorie quantique des champs et physique statistique.

        Associations
        - Membre de l'Académie des sciences (France) depuis 1991
        - Président de l'Académie des sciences (France) de 2005 à 2006
        - Membre étranger de la Royal Society (Royaume-Uni) en 2006
        - Membre étranger associé à la National Academy of Sciences (États-Unis) depuis 2003


        Source Canal-U - UTLS - Mission 2000 en France :
        Pourquoi la matière change-t-elle d'état : La Compétition entre Ordre et Désordre - Edouard BREZIN

        OnlyZenTV : Education - Innovation - Création - We are sure ! Together we can Change the World ...
        Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ...
        Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV

        L’imaginaire dans la rigueur du droit - Mireille DELMAS-MARTY - Droit, Imagination et Mondialisation - 65 mn - Festival Philosophia St Emilion 2010




        Une conférence animée pas Nicolas Truong avec Philosophie Magazine - Festival Philosophia St Emilion 2010
        1ère partie de la conférence - Durée : 35 mn - Production - Réalisation : Philosophies TV
        "L’imaginaire dans la rigueur du droit" par Mireille DELMAS-MARTY

        Le droit se trouve aujourd’hui face a une mutation sans précèdent qui voit se superposer normes nationales, régionales et internationales. Il se doit des lors de penser a la fois le particulier et l’universel, d’incorporer la part d’indétermination qui lui est constitutive ou encore de mesurer la valeur créatrice de ce "flou" qu’il génère. A travers ses recherches et sa démarche, dont la rigueur et l’imagination sont au service d’un droit en mouvement, Mireille Delmas-Marty s’inspire des leçons de Paul Klee ou des compositions de Pierre Boulez pour définir ces Forces imaginantes du droit. Par delà le relatif et l’universel, elle pose les jalons pour imaginer un futur ordre juridique mondial ...

        Mireille Delmas-Marty : Collège de France, Académie des Sciences Morales et Politiques




        2ème partie de la conférence - "L’imaginaire dans la rigueur du droit" par Mireille DELMAS-MARTY - Durée : 30 mn

        Le droit se trouve aujourd’hui face a une mutation sans précèdent qui voit se superposer normes nationales, régionales et internationales. Il se doit des lors de penser a la fois le particulier et l’universel ...

        Le Festival Philosophia St Emilion 2010 :
        Après "les sens", "le bonheur" et "le monde", le festival Philosophia 2010 s’intéressait à "l'imagination", faculté humaine à double définition puisqu'elle est à la fois celle de se représenter des images et celle de créer, concevoir ou inventer ce qui n'est plus de l'ordre du réel.


        Comment définir l’imagination ? Comment fonctionne-t-elle ? Peut-on vivre sans ? N’est-elle qu’un leurre ? Autant de questions qui de Pascal à André Breton, ont bousculé les pensées dans des domaines aussi divers que l’art ou la science. Définir l’imagination, la comprendre, l’apprendre ...
        Site Internet et le Programme du Festival Philosophia St Emilion 2010 : Festival Philosophia St Emilion 2010

        Source Philosophies.TV - Festival Philosophia St Emilion 2010 : L’imaginaire dans la rigueur du droit - Mireille Delmas-Marty : 1ère partie de la conférence - 2ème partie de la conférence


        La Biographie de Mireille DELMAS-MARTY :
        Mireille Delmas-Marty, qui a enseigné le droit à l’Université (Lille II, Paris XI et Paris I), est titulaire de la chaire "Etudes juridiques comparatives et internationalisation du droit" au Collège de France.
        Elle est notamment l’auteur de Pour un droit commun (Seuil, 1994), Vers un droit commun de l’humanité (Seuil, 1996), Trois défis pour un droit mondial (Seuil, 1998), des Forces imaginantes du droit (3 vol. parus au Seuil, 2004-2007) et de Libertés et sûreté dans un monde dangereux (Seuil, 2009).
        Source la librairie Decitre.fr : Biographie et Ouvrages de Mireille Delmas-Marty sur Decitre.fr

        OnlyZenTV : Education - Innovation - Création - We are sure ! Together we can Change the World ...
        Conférences, Documentaires, Débats, Tables rondes, Colloques, Interviews, Informations, Reportages, Cours ...
        Développement Durable, Ethique, Environnement, Innovation, Philosophie, Psychologie, Sociologie, Histoire, Sciences, Arts et Création ... Youtube OnlyZenTV - Twitter OnlyZenTV - Blogspot OnlyZenTV